Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(11): e1011498, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934729

RESUMO

Public-domain availability for bioinformatics software resources is a key requirement that ensures long-term permanence and methodological reproducibility for research and development across the life sciences. These issues are particularly critical for widely used, efficient, and well-proven methods, especially those developed in research settings that often face funding discontinuities. We re-launch a range of established software components for computational genomics, as legacy version 1.0.1, suitable for sequence matching, masking, searching, clustering and visualization for protein family discovery, annotation and functional characterization on a genome scale. These applications are made available online as open source and include MagicMatch, GeneCAST, support scripts for CoGenT-like sequence collections, GeneRAGE and DifFuse, supported by centrally administered bioinformatics infrastructure funding. The toolkit may also be conceived as a flexible genome comparison software pipeline that supports research in this domain. We illustrate basic use by examples and pictorial representations of the registered tools, which are further described with appropriate documentation files in the corresponding GitHub release.


Assuntos
Genômica , Software , Reprodutibilidade dos Testes , Genômica/métodos , Biologia Computacional/métodos , Genoma
2.
JMIR Res Protoc ; 11(9): e40189, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36169998

RESUMO

BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders during childhood; however, the diagnosis procedure remains challenging, as it is nonstandardized, multiparametric, and highly dependent on subjective evaluation of the perceived behavior. OBJECTIVE: To address the challenges of existing procedures for ADHD diagnosis, the ADHD360 project aims to develop a platform for (1) early detection of ADHD by assessing the user's likelihood of having ADHD characteristics and (2) providing complementary training for ADHD management. METHODS: A 2-phase nonrandomized controlled pilot study was designed to evaluate the ADHD360 platform, including ADHD and non-ADHD participants aged 7 to 16 years. At the first stage, an initial neuropsychological evaluation along with an interaction with the serious game developed ("Pizza on Time") for approximately 30-45 minutes is performed. Subsequently, a 2-week behavior monitoring of the participants through the mADHD360 app is planned after a telephone conversation between the participants' parents and the psychologist, where the existence of any behaviors characteristic of ADHD that affect daily functioning is assessed. Once behavior monitoring is complete, the research team invites the participants to the second stage, where they play the game for a mean duration of 10 weeks (2 times per week). Once the serious game is finished, a second round of behavior monitoring is performed following the same procedures as the initial one. During the study, gameplay data were collected and preprocessed. The protocol of the pilot trials was initially designed for in-person participation, but after the COVID-19 outbreak, it was adjusted for remote participation. State-of-the-art machine learning (ML) algorithms were used to analyze labeled gameplay data aiming to detect discriminative gameplay patterns among the 2 groups (ADHD and non-ADHD) and estimate a player's likelihood of having ADHD characteristics. A schema including a train-test splitting with a 75:25 split ratio, k-fold cross-validation with k=3, an ML pipeline, and data evaluation were designed. RESULTS: A total of 43 participants were recruited for this study, where 18 were diagnosed with ADHD and the remaining 25 were controls. Initial neuropsychological assessment confirmed that the participants in the ADHD group showed a deviation from the participants without ADHD characteristics. A preliminary analysis of collected data consisting of 30 gameplay sessions showed that the trained ML models achieve high performance (ie, accuracy up to 0.85) in correctly predicting the users' labels (ADHD or non-ADHD) from their gameplay session on the ADHD360 platform. CONCLUSIONS: ADHD360 is characterized by its notable capacity to discriminate player gameplay behavior as either ADHD or non-ADHD. Therefore, the ADHD360 platform could be a valuable complementary tool for early ADHD detection. TRIAL REGISTRATION: ClinicalTrials.gov NCT04362982; https://clinicaltrials.gov/ct2/show/NCT04362982. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/40189.

3.
Viruses ; 13(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805449

RESUMO

The Covid-19 pandemic has required nonpharmaceutical interventions, primarily physical distancing, personal hygiene and face mask use, to limit community transmission, irrespective of seasons. In fact, the seasonality attributes of this pandemic remain one of its biggest unknowns. Early studies based on past experience from respiratory diseases focused on temperature or humidity, with disappointing results. Our hypothesis that ultraviolet (UV) radiation levels might be a factor and a more appropriate parameter has emerged as an alternative to assess seasonality and exploit it for public health policies. Using geographical, socioeconomic and epidemiological criteria, we selected twelve North-equatorial-South countries with similar characteristics. We then obtained UV levels, mobility and Covid-19 daily incidence rates for nearly the entire 2020. Using machine learning, we demonstrated that UV radiation strongly associated with incidence rates, more so than mobility did, indicating that UV is a key seasonality indicator for Covid-19, irrespective of the initial conditions of the epidemic. Our findings can inform the implementation of public health emergency measures, partly based on seasons in the Northern and Southern Hemispheres, as the pandemic unfolds into 2021.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/efeitos da radiação , Humanos , Incidência , Aprendizado de Máquina , Pandemias , SARS-CoV-2/fisiologia , Estações do Ano , Temperatura , Raios Ultravioleta , Tempo (Meteorologia)
4.
Big Data ; 9(1): 63-71, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32991205

RESUMO

As high-throughput approaches in biological and biomedical research are transforming the life sciences into information-driven disciplines, modern analytics platforms for big data have started to address the needs for efficient and systematic data analysis and interpretation. We observe that radiobiology is following this general trend, with -omics information providing unparalleled depth into the biomolecular mechanisms of radiation response-defined as systems radiobiology. We outline the design of computational frameworks and discuss the analysis of big data in low-dose ionizing radiation (LDIR) responses of the mammalian brain. Following successful examples and best practices of approaches for the analysis of big data in life sciences and health care, we present the needs and requirements for radiation research. Our goal is to raise awareness for the radiobiology community about the new technological possibilities that can capture complex information and execute data analytics on a large scale. The production of large data sets from genome-wide experiments (quantity) and the complexity of radiation research with multidimensional experimental designs (quality) will necessitate the adoption of latest information technologies. The main objective was to translate research results into applied clinical and epidemiological practice and understand the responses of biological tissues to LDIR to define new radiation protection policies. We envisage a future where multidisciplinary teams include data scientists, artificial intelligence experts, DevOps engineers, and of course radiation experts to fulfill the augmented needs of the radiobiology community, accelerate research, and devise new strategies.


Assuntos
Inteligência Artificial , Big Data , Animais , Radiobiologia , Projetos de Pesquisa
6.
BMC Bioinformatics ; 17(1): 212, 2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170263

RESUMO

BACKGROUND: The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. RESULTS: We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains information from the literature as well as experimental information from transcriptomics and proteomics studies. It deploys a hybrid, distributed solution using both local storage and cloud technology. CONCLUSIONS: BRIDE can act as a knowledge broker for LDIR researchers, to facilitate molecular research on the systems biology of LDIR response in mammals. Its flexible design can capture a range of experimental information for genomics, epigenomics, transcriptomics, and proteomics. The data collection is available at: .


Assuntos
Encéfalo/efeitos da radiação , Radiação Ionizante , Pesquisa , Software , Relação Dose-Resposta à Radiação , Humanos
7.
Sci Rep ; 4: 4655, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24722254

RESUMO

There is growing evidence for the involvement of Y-complex nucleoporins (Y-Nups) in cellular processes beyond the inner core of nuclear pores of eukaryotes. To comprehensively assess the range of possible functions of Y-Nups, we delimit their structural and functional properties by high-specificity sequence profiles and tissue-specific expression patterns. Our analysis establishes the presence of Y-Nups across eukaryotes with novel composite domain architectures, supporting new moonlighting functions in DNA repair, RNA processing, signaling and mitotic control. Y-Nups associated with a select subset of the discovered domains are found to be under tight coordinated regulation across diverse human and mouse cell types and tissues, strongly implying that they function in conjunction with the nuclear pore. Collectively, our results unearth an expanded network of Y-Nup interactions, thus supporting the emerging view of the Y-complex as a dynamic protein assembly with diverse functional roles in the cell.


Assuntos
Genômica , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais , Linhagem Celular , Análise por Conglomerados , Drosophila melanogaster/metabolismo , Redes Reguladoras de Genes , Humanos , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...